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A note on the convergence of perturbation theory in polymer 
problems 

S F Edwards? 
Cavendish Laboratory, Madingley Road, Cambridge, UK 

Received 19 February 1975 

Abstract. It is shown that the Fixman perturbation expansion for the number of con- 
figurations of a self-interacting polymer molecule (from which the entropy, end-to-end 
distance etc can be calculated) is not convergent for any strength of interaction, but is 
asymptotic. 

1. Introduction 

A basic quantity in the theory of polymer statistics is the number of configurations 
G,,(r,r’) which a polymer of n links has when its end points are at r and r‘. The full 
structure of G, requires a detailed knowledge of the forces between monomers, but as 
n increases the fine structure of the force plays a smaller and smaller role, so that for 
large n, G can be developed in a series in the interaction which has the form : 

and fl is the binary cluster integral, b the mean square length of a segment. The series is 
developed in detail by Yamakawa (1971). 

The variable z is a measure of the effective interaction between points of the chain. 
From this series the mean end-to-end distance is readily calculated : 

J (r - r’)’G, d3(r - r’) 
J G, d3(r - r ’ )  

( R ’ )  = (3) 

and the entropy of the system is just K In G. 

variables $k such that 
In this note it will be shown that G, can be represented by an integral over a set of 

t At present at Science Research Council, State House, High Holborn, London WClR 4TA, UK. 
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This form suggests an application of Watson’s lemma, which states that a power series 
expansion of 

g(z) = / f ( x ,  z) e-x2 dx ( 5 )  

converges if and only if the power series of 

converges absolutely for all z .  A good account of the lemma is given in the chapter on 
asymptotic series in Jeffreys and Jefieys (1956). i t  can be shown in the present case that 
9 does not so converge so that the series for G diverges. 

2. The representation of C 

The simplest weighting of configurations appears in the Boltmann interaction with a 
potential W(r-r’).  If the polymer is considered to be a necklace of points R, a con- 
figuration will have a weight factor : 

(7) 
1 f m  

If this is considered as a power series in W, the terms of some order q, ie in (W)g will 
involve terms where all the R,  are different, then two are the same, and so on down to 
a term Z(W(R, - R,))4. Consider for the moment all the terms in W(Rl - R,). When 
added up these constitute a complete solution of the number of configurations involving 
just R, and R, .  Taking this set alone, there will be some pseudopotential w(Rl - R,) 
which, when treated as a perturbation, exactly reproduces the interaction of 1 and 2 
in its first-order term. Thus w is in fact UT/.? 6(Rl - R,)  where /.? is the binary collision 
integral. For very long chains, and small /.?, the whole behaviour of the polymer will be 
accurately treated by replacing W by w, ie (KT)/.? and in the sum 

treating fi as a pseudopotential, ie ignoring terms involving powers of the terms of any 
pair I, m. This is done analytically by considering the set of points R, , R, . . . tending to 
a continuum R(s) and using 

This representation automatically discards things like (W(R,  - R2))4 and reproduces the 
Fixman perturbation series for any property of the polymer, provided that the single-loop 
term which would be divergent for the simple S function representation is made finite. 
It is an uninteresting constant. Now several statements have been made in the above 
paragraph which would require some space to be fully proved. However, it is not the 
purpose of this note to consider the status of the binary collision approximation and 
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this will simply be assumed. What we wish to do  is study the convergence of the expan- 
sion, and this is accomplished by a parametric representation based on the identity 

p x - x 7 / 2  dx = e+a2/2 I e-x2/2 dx. s 
The double integral can be written in Fourier transform 

1 ds, /ds,W(R(s,)-R(s,)) = ( 2 7 ~ ) - ~  d3kU(k) ds, ds, exp[ik. (R, -R2)] s s s  
1 - - -s d3kU(k)[dsl exp(ik.R,)] [[ds, exp(-ik. R,)] 

(27d3 

where U(k)  is the Fourier transform of W(r). If W is represented inside a box, the J d3k 
is replaced by x k  as in Fourier series. Using the x k  for the moment 

(12) 

is an identity for any set of labels k. Using the identity, trivially extended to complex 
variables 

= exp - ds, ds, eik*RI e-ik.Rz 
( k  

where z = x + iy, z* = x - iy, one can define 

4(r) = J eik-r4k d3k = C eik*'4, in a box. 
k 

If for example one uses 

U(k) = /3/(27# 

then one needs to take the weight factor 

and average with a weight factor 

= exp[ - 1 #(r) d3r d3r'y(r-r')$(r') n (E) 'I2 d4.1. 
k 

(14) 

(15) 
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Note that the sum over k ,  rather than the integral, is brought about by putting the system 
in a box, which is physically uninteresting, and the number of k values being infinite is 
required to build up the precise shape of the pseudopotential 6(r-r’). The choice of a 
finite number of k values will lead to a potential which is periodic of period 1/M where 
M values of k are used. Such a periodicity will not affect our system physically since 
the distance over which the periodicity occurs can be made larger than the box if M is 
large enough. The shape of W is affected, but as has been already argued, that is of no 
consequence physically. Alternatively it is to be noted that the function 6,  appearing in 
the parametrization is arbitrary, and can be chosen to permit the use of theorems which 
allow a rigorous use of an infinite set of k values to be used, in particular one can choose 
y k  SO that 

J y;’ d3k 

is finite (I am indebted to I)r Dwight Freund for pointing this out to me). This paper 
is not, however, intended to give a rigorous mathematical proof of a standard acceptable 
to pure mathematicians and will content itself to show that the parametrization (12) 
leads to a multiple use of Watson’s lemma to show that the partition function diverges. 
There is no need to confine oneself to the 6 function ; any function w(R(s,)-R(s,)) will do, 
but if the Fourier transform of w, U(k),  has both positive and negative components, 
these must be given different parametric representations. In fact I believe the theorems 
quoted here can be extended to cover these cases, but it would involve extending, rather 
than just quoting, the literature. For convenience yk will be put equal to unity, but in 
all that follows can be given any form required for theorem proving. 

Consistent with the transition to the integral representation is the use of the diffusion 
equation to describe the free polymer. This equation defines Go : 

(g - :V’) Go(r7 r’ ; s, s’) = 6(r - r’)6(s - s‘) 

3 (r-r’)’ 3(s-s’) 3’2 ( 2b ( s - s ’ ) ~ )  ( 2bn ) ’ 
G,=exp --___ ~ 

The addition of the weight factor (15) changes the problem to  one of evaluating 

[g-:V2+i(&4(r)) ”’]G([q5], r,r‘; s,s‘) = 6(r-r’)6(s-sf) (20) 

Equation (20) amounts to saying that over a distance ds one can treat the statistics of the 
free chain, which gives ibV’, and the interactions, which give i[p/(21t)3+(r)]1/2 as inde- 
pendent, ie there is no cross term. This is indeed the case, and the mathematical back- 
ground is fully developed by Freed (1972). 

The integral (21) can be manipulated into a form where Watson’s lemma can be 
applied. 
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3. The application of Watson’s lemma 

The differential equation (20) may be cast as a Fredholm integral equation by using 

G(n r‘ ; s, s‘[+]) = Go(r - r’, s - s‘) 

-i( &) l i 2  (Go(r -rl, s -s‘)4(r1) d3r dslG([4], rl, r‘; s, s’) ) . (22) 

This may be Fourier (or Laplace) transformed on s, whereupon s ceases to be an active 
variable. Also Fourier transform on r, introducing 

Y(k,  , k ,  ; p )  = exp[ip(s - s’)] exp(ik, . r + ik, . r‘)G(r, r’ ; s, s’[4]) (23) 

w,, k , ;  P) = YO(k1, A,; P) 

-i( &) ’’, 

g(k) = J ~ ( k ,  k ,  ; p )  d3k2 

7 k 3  ; p)4(k3-k4)Y(k4, k 2 ;  p )  d 3 k 3  d3k4)’ (25) 

But in the end one wants the average of G[4] which will be a function of r - r’ and hence 
the average over 4 of G will contain a term in 6(k + k,). Thus in (25) it suffices to consider 
the integral over k ,  which, with 

(26) 

which has the classical Fredholm form 

g(k)+ j ~ ( k ,  d3.j = go(k). 

Note that using the Fourier series for 4, the term in +o merely represents the uniform 
average of 4 over the box and can be taken zero without loss of generalities. Also recall 
that we can expect some trouble from the simple 6 function interaction at very short 
distances, ie in the evaluation of the average the term representing infinitesimally tight 
loops will need U(k) # 1 to be convergent. Within these comments (29) may be directly 
evaluated by a perturbation series which can be represented by writing go as a full line, 
and 4 as a dotted line, when 

. .  . . .  . .  . . .  . .  . . .  . .  . . .  . .  . . .  . .  . . .  . .  . . .  
(30) g = -  +- +-+- + . . . .  

The integration over 4 joins up the dotted lines in all ways and writes a U(k)  there, or 
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(apart from the simple loop which requires U(k) to show its structure to be convergent) 
just gives the contact points, ie 

++! 
Thus the physical contacts of the chain are directly represented by the series in and 
the series thus obtained is that appropriate when binary encounters alone are significant 
(as indeed they are under small+ large-l conditions). 

But this series is the expansion of the Fredholm integral which is solved as the ratio 
of two absolutely convergent series, the Fredholm resolvent and the Fredholm deter- 
minant. Watson’s lemma tells one that the average of g will only possess a convergent 
series if and only if the series for g is absolutely convergent for all &. This is not the case 
since the Fredholm determinant will have roots and its inverse will not be expandable 
as an absolutely convergent series. To put it in more general terms, it is not enough 
to argue fl is small, or anyway repulsive. Roughly speaking, if the Fixman series for G 
diverges for any f l ,  it will diverge for all B. This is clearly recognized as being asymptotic. 
It does, however, cast a shadow on doing enormous amounts of work to push the series 
further along. 

The reason for the divergence is clear once one studies the topology of the series. 
There is a combinatorial explosion, and at order /Y’ there are n ! terms. 

If one now considers derived quantities like 

It is given by the ratio of two quantities both of which are asymptotic if expanded in B. 
Their ratio will likewise be asymptotic unless some miraculous cancellation takes place, 
ie there is a relationship such that the many terms in the nth order cancel. However, 
I can offer no proof. 
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